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Exact results are obtained for the annealed, dilute, q-component  Potts model on 
the decorated square lattice. The phase diagram is found to consist of  a high- 
temperature region, a low-temperature region, and a two-phase region in between 
which arises only for q > 4; exact expressions for the phase boundary and the 
critical probability are derived. At the critical point the specific heat is generally 
finite and has a cusp; the slope of  the cusp is finite for q = 4 and infinite (vertical) 
f o r q = 2 a n d 3 .  

KEY WORDS: Dilute Potts model; phase diagram; critical probability; 
specific heat. 

1. I N T R O D U C T I O N  

Recently there has been considerable theoretical interest in the problem of  the 
random Potts model, a statistical mechanical model in which the sites of a 
lattice are occupied at random by atoms interacting with Potts interactions. 
As in any disordered system, this randomness can be either quenched or 
annealed. In a quenched system, which is mathematically more difficult to 
deal with, the atoms are frozen in position, while in an annealed system the 
atoms are in thermal equilibrium with the surroundings. The latter fact makes 
the annealed system more tractable to analysis. 

The annealed model is also of interest in its own right, for it is related to 
other problems of physical interest. Murata (1) has shown that the dilute Potts 
model leads to a Hamiltonian formulation of the problem ofsite percolation 
in a lattice gas. The statistical mechanical model of  polymer gelation proposed 
by Coniglio e t  al. (2) can also be considered in a similar fashion. 

The annealed random Potts model has been considered by Niehuis 
et  al. (3) using the renormalization group. More recently, Turban ~4) studied a 
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related problem of quenched bond disorder in the Potts model under an 
"effective interaction approximation." Both of these studies are approximate 
in nature. In this paper we consider an annealed random Potts model for 
which exact results can be obtained. We derive, in particular, its exact phase 
diagram and the behavior of the specific heat near the critical point. 

The model is defined in Section 2. We show in Section 3 that this random 
model is reducible to a regular Potts model. From this equivalence we obtain 
in Section 4 its exact phase diagram. The critical behavior of the specific heat 
and other properties of this model are discussed in Section 5. 

2. M O D E L  DESCRIPT ION 
Consider the decorated square lattice shown in Fig. 1, constructed by 

inserting decorating sites into the bonds of a square lattice. To distinguish the 
decorating sites from those on the original lattice, we shall denote the inserted 
sites by the index ~ and the original square lattice sites by the index i. Consider 
next a lattice gas on this decorated lattice subject to the condition that (i) all 
sites i are occupied by atoms, and (ii) the sites 7 can be either occupied or 
empty. Two atoms occupying nearest neighboring sites interact with a Potts 
interaction. 

As in a lattice gas, the Hamiltonian ~ takes the form 

- ~ U f / k T :  K ~ t~61= + A Z t ~ (1) 
(i,=) = 

Here Tis the temperature; t= = O, l is a random variable associated with the 
site ~; A is the chemical potential of each occupied site; and the first 
summation in (1) is taken over all nearest neighbors. Also 

6i= = 6(21, 2=) (2) 

where 2~, 2= = 1, 2 ..... q specify the Potts states. For  simplicity we shall assume 
q >/1. The system is ferromagnetic (antiferromagnetic) for K positive 
(negative). 
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Fig. 1. The decorated square lattice. 
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For q = 2 this model reduces to the model of dilute ferromagnetism 
introduced by SyoziJ s'6} As we shall see, the generalization to general q leads 
to new features not found in the dilute Ising system. 

The grand partition function of the present model takes the form 

q q 

E(A,K) = Z ~ Z e-•/kT (3) 
t ~ = 0 , 1  2 i = 1  2 ~ = 1  

where it is understood that the summation over the q states of 2~ arises only 
for t~ = 1, namely when the site c~ is occupied. Since the physical variable 
that actually enters the picture isp, the fraction, or concentration, of the occu- 
pied decorating sites, the chemical potential A is to be eliminated through the 
relation 

p = ~ z(A, K) (4) 
O / k  

where 

z(A, K) = lim (2N)- 1 In ='(A, K) (5) 
N ~ oo 

N being the number of sites of the square lattice. Similarly, the energy per 
decorating site is 

0 
U(p, K) = - ~  z(A, K) (6) 

where A = A(p, K) obtained from (4) is to be substituted after the differentia- 
tion. The phase boundary is now defined to be the surface in the (p, q, T) space 
on which U(p, K) becomes singular in K. Finally, the temperature derivative 
of U(p, K) at constant p yields the specific heat 

K 3  
c(p, K) - T 3K U(p, K) (7) 

3. R E D U C T I O N  TO A R E G U L A R  POTTS M O D E L  

Analysis of the random model (1) relies on the fact that the decorated 
bonds together with the decorating sites ~ can be replaced by equivalent single 
Potts interactions. This equivalence is given in Fig. 2, which shows a decorated 
bond replaced by a single interaction of strength K*. Writing 

q 

A exp(K*6i~ ) = 1 + ~ exp[K(61~ + 6j~) + A] (8) 
2= = 1 
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Fig. 2. Equivalence of a decorated bond with a single interaction of  strength K*. 

we obtain the following relation valid for a periodic lattice: 

E(A, K) = [)t(A, K ) ] 2 N Z ( K  *) (9) 

where Z ( K * )  is the partition function of a Potts model on the square lattice 
whose Hamiltonian is - H / k T  = K *  Y~i~ 6ij .  Explicitly from (8), we have 

A(A, K) = 1 + e~(e 2x  + q - 2) (10) 

1 +eA(e 2 K + q -  1) 
e K * = l + e a ( 2 e  K + q - 2 )  ~>1 (11) 

Note that (1 I) implies K* ferromagnetic for all K. The concentration of the 
occupied decorating sites given by (4) now takes the form 

2e K + q - 2  e 2 K + q -  1 
I-1 - E ( K * ) ]  + E(K*) ( 1 2 )  

P e - a  + 2 e  x + q --  2 e - ~  + e 2K + q --  1 

where 

E ( K * )  = lim (2N)- 1 ~? N-~ 0 - ~  in Z ( K * )  (13) 

Finally, eliminating A between ( 1 1 )  a n d  ( 1 2 ) ,  we obtain 

v 2 v*[1 + v *-1 - E(v*)] 
2v + q p(1 + v *-1) - E ( v * )  (14) 

where we have introduced the convenient variables v = e K - 1, v* = e K* - 1. 

Equation (14) is the key expression which relates v* to v. Also, by combining 
(6) and (9) with (11), we obtain the following explicit expression for the 
energy: 

U(p, K) 2(1 + v)v*  ~ ,  , ,  v(1 + v )v* (v  2 - vv*  - qv* )  
- + - - -  ( 1 5 )  v 2 - qv*  t~ tv  ) (~y 2 - q v - - ~  - qv*  -To 

where, again, v* = v*(p, K) is to be obtained from (14). 

4. EXACT PHASE D I A G R A M  
We are now in a position to derive the exact phase diagram for the 

decorated system. We observe from (15) that the phase boundary in the 
(p, q, T), or (p, q, K-  1), space is the trajectory along which either v* or E ( v * )  

is nonanalytic in v. Now v*(v)  obtained from (14) also implicitly contains 
E ( v * ) .  Hence we need only to focus on the function E ( v * ) .  
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It has been established that, for v* >i 0 and q ~> 1 at least, E(v*) has a 

unique singularity at v = x/-q. ~7's) It follows from (14) that the phase boundary 
is 

Vc 2 _ xfq(  1 + q- l i e  _ Ec ) 
(16) 

2vc + q p(1 + q-1/2) _ Ec 

where E c = E(xfq). Other established properties of E(v*) are the following~ 

For q ~< 4, E(v*) is continuous at v* = x ~  with the critical value 

E c = �89 + q-1/2) (17) 

For q >~ 4, E(v*) has a jump discontinuity at v* = , ~  with the limiting values 

where 

E c = E ( . ~ + )  = �89 + q-1/2)[1 + A(q)] (18) 

A(q) = tanh(�89 H (tanh nO) 2 (19) 
n = l  

2 cosh 0 = (20) 

Equation (16) in conjunction with (17) and (18) now determines the exact 
phase diagram for the decorated system. We consider the ferromagnetic and 
antiferromagnetic cases separately. 

4.1.  Ferromagnetic interactions 

For K > 0 or v c > 0, the left-hand side of (16) is always positive. Also, 
E(v*) ~< 1 ; hence the phase boundary extends only to the region 

p(1 + q-1/2) >~ Ec (21) 

Using the values of E c given by (17) and (18), we obtain the following critical 
probability: 

Pc(q) = 1, q <~ 4 

= �89 - A(q)], q >~ 4 (22) 

The critical probability has the meaning that there is no transition for 
P < Pc(q). Note that the critical probability happens to coincide with the 
threshold probability of bond percolation (10) for all q ~< 4, a property unique 
to the square lattice. 

For q ~< 4, the critical condition (16) assumes the explicit expression 

= 1 + ~ -  {1 + [1 + xfq (2p - 1)31/2} (23) e K~ 
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which for q = 2 reduces to 

cosh K c = 1 + x f @ ( 2 p  - 1) (24) 

This is the established result for the dilute Ising model/5"6) For q > 4, the 
critical surface splits into two branches when the two values of Ec in (18) are 
substituted into (16). The two branches coalesce at p = 1, however. 

The phase diagram of the ferromagnetic decorated model is constructed 
in Fig. 3. It is seen that the phase space is divided into three regions: a low- 
temperature region containing the q axis in which the system is in an ordered 
phase, a high-temperature region in which the system is disordered, and a two- 
phase region which arises only for q > 4. The two-phase region increases in 
size with q, and eventually prevails for allp < 1 in the q ~ oc limit. This phase 
diagram is very similar to that of the q u e n c h e d  dilute Ports model obtained 
under the effective interaction approximation. (4) The intercepts of the phase 
boundary in Fig. 3 are the following" 

p = a ,  q~<4, 

= �89 _ A(q)], q >/4, 

e Kc= (2p)1/2/[(2p)  1/2 - 1], q = 1 

T = O  

T = O  (25) 

(26) 

K--I 

' o0 =p 0.4~~ 
9 0,388 0.6/2 

q. 
Fig. 3. Exact phase diagram for ferromagnetic (K > 0) interactions. A two-phase region arises 

for q > 4. 
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eke= 1 + ,,/q + ,,fq(1 + ,~)1/2, p = l  

779 

(27) 

4.2. A n t i f e r r o m a g n e t i c  I n t e r a c t i o n s  

For  K < 0 or  - 1 ~< vc ~< 0, i t  can be seen that  the two sides o f  (16) can 
never be made equal for q/> 4. Hence there is no transition for q >/4. 

For q < 4, (16) can be written more explicitly as 

= 1 + ~ {1 - [-1 + ,,fq (2p - 1)31/2} (28) e-rKcl 

Note that the right-hand side of (28) does not diverge a tp  = 1/2. The critical 
surface represented by (28) is constructed in Fig. 4. The phase space is divided 
into a low-temperature (ordered) region containing the origin and a high- 
temperature (disordered) region. We also find the following expression for the 
critical probability: 

Pc(q) = �89 + ,~/q (q - 2)], q < �89 + ,~/5) = 2.618 (29) 

As a consequence, the antiferromagnetic model has a phase transition only for 
q = 2. This result is consistent with our expectation, since for q/> 3 the ground 
state of the decorated model has a nonzero entropy. We also note that, for 
q = 2, the critical temperature (28) coincides with that of the ferromagnetic 

IKI-' 

2.618 

q 
Fig. 4. Exact phase diagram for antiferromagnetic (K < 0) interactions. 
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model.  This is again consistent with our  expectat ion,  for the q = 2 Ising model  
is invar iant  under  the change of  K - *  - K .  The  intercepts in Fig. 4 are 

e -IK~ = (2p)l /z /[(2p)l /2 + 1], q = 1 (30) 

e -I<l = 1 + , , ~  - . , /q(1 + ..f~)1/2, p = 1 (31) 

Finally, we remark  that  it is also possible to construct  for bo th  K > 0 and 
K < 0 the (p, q, A) phase diagram.  The phase bounda ry  is obta ined directly 
f rom (11) as 

1 + eA(e 2Kc + q - 1) 
1 + eA(2e ~ + q - 2) = x fq  - 1 (32) 

and the cons t ruc t ion  confirms the general correctness of  the phase d iagram 
obta ined f rom the renormal iza t ion-group  considerat ion.  (3) 

5. OTHER PROPERTIES A N D  D I S C U S S I O N S  

The specific heat  o f  the decorated dilute model  is computed  by substi- 
tut ing (15) into (7) and using (14) to relate v* to v. The mos t  direct way to see 
this latter relation is to expand (14) abou t  the critical point  v = v c and 

v* = x/q- Using the fact that  

E(U*) -- E ( N ~ )  ~ (V* -- N ~ )  1 -cg, T ~ T c_ (33) 

where c( < 1 is the t empera ture  exponent  of  the regular Pot ts  model ,  we 
obtain  the desired relation 

(v* - , , ~ ) ' - ~ ' ~  v - vc (34) 

for 0 ~< ~' < 1. The expressions (33) and (34) now dictate that  8E(v*)/Ov is 

finite at the critical point ,  even though E'( , , /q)  m a y  diverge. I t  follows that  the 
specific heat  c(p, K) will generally be finite at K = K~. Detai led calculation 
shows explicitly tha t  

c(p, Kc) ~ (2p - 1)/(1 - p), q ~< 4 (35) 

whence the specific heat  diverges only for p = 1. 
To  s tudy the behavior  of  c(p, K)  near  Kc, it is again most  convenient  to 

directly expand (14) and (15). However ,  it is necessary here to keep the two 
leading terms in the expansions.  As a result, we find after taking a tempera ture  
derivative, 

c(p, K)  = c(p, Kc) + A(v  - vc) 

+ B(v - v~) ~'10 - ~') + C(v  - v~) 11(1 - ~') + "", T ~ T c_ (36) 
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where A, B, and C are constants.  A similar expression holds with ~ in place 
of  ~' for T,~  To+. 

For  1/2 < ~' ~< 1 the leading term in (36) is linear in v - v c and the specific 
heat has a cusp with finite slope at Tc. For  0 ~< c( ~< 1/2, however,  the leading 
term is (v - vc) ~'/~1 -~') and the specific heat cusp has an infinite slope at T c. 
The occurrence o f  this infinite slope has been confirmed in the case o f  the 
dilute Ising model  (q = 2), for which ~ = ~' = 0. (6) We remark that, in a simi- 
lar analysis o f  the specific heat for the dilute Ising model,  Essam and 
Garelickt~ 1,12) have reached essentially the expression (36), but  with the omis- 
sion o f  the term linear in v -  vc. This omission results in an incorrect 
prediction for 1/2 < c( ~< 1. 

Using the conjectured value (~a) o f  

= ~ 1 + - c o s  -1 
2 , 

q ~< 4 (37) 

or  e = c( = 1/3 for  q = 3 and e = c( = 2/3 for q = 4, we see that  the cusp in the 
specific heat has a finite slope for q = 4 and an infinite slope for q = 2 and 3. 

To discuss the magnetic  properties o f  the dilute model  it is necessary to 
include an external field in the Hamil tonian(1) .  Unfor tuna te ly ,  the trans-  
format ion  (8) does not  go through for q >~ 3. One possible remedy of  this 
difficulty is to include two external fields. Fur ther  assuming that  the magnetic 
exponents for these two fields are identical, one then obtains the renormalized 
exponents rid = f l /(1 -- ~'), ?~ = 7/(1 -- ~'), etc., where fld and 7~ are the mag-  
netic exponents  for the decorated lattice. For  the q = 3 models,  for example, 
the best est imation (14) off l  = 1/9 leads to the value fld = 1/6 for the decorated 
dilute system. 

Finally, we ment ion that  analyses can also be carried out  for the 
decorated models on the tr iangular and honeycomb  lattices. Using the exact 
critical properties o f  the regular Potts  model  on these lattices, (15) similar exact 
results can be derived. Again,  one finds a two-phase region in the phase 
diagram for q > 4. The critical probabil i ty Pc(q)  is found to be q dependent  
for all q. 

To summarize,  we have obtained the exact phase diagram for  the 
decorated dilute Potts  model  on a square lattice. The phase boundary  
(16)-(18) leads to the exact transition temperatures as well as the exact critical 
probabil i ty Pc(q) .  One novel feature o f  this dilute model  is the existence o f  a 
two-phase region for q > 4. The specific heat is generally finite and has a cusp 
at the critical point. The slope o f  the cusp is finite for q = 4 and infinite 
for q = 2 and 3. 
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